
Khiva Documentation
Release v0.5.0

Shapelets.io

May 20, 2020

Table of Contents

1 Getting Started 3

2 Khiva API 9

3 Bindings 55

4 Building programs using Khiva with CMake 57

5 AUTHORS 59

6 Cite Us 61

Index 63

i

ii

Khiva Documentation, Release v0.5.0

This is the documentation of Khiva library.

Khiva1 is an open-source library of efficient algorithms to analyse time series in GPU and CPU. It can be used to
extract insights from one or a group of time series. The large number of available methods allow us to understand the
nature of each time series. Based on the results of this analysis, users can reduce dimensionality, find out recurrent
motifs or discords, understand the seasonality or trend from a given time series, forecasting and detect anomalies.

Khiva provides a mean for time series analytics at scale. These analytics can be exploited in a wide range of use cases
across several industries, like energy, finance, e-health, IoT, music industry, etc.

This is just the beginning, so stay tuned as more features are coming . . .

Gitter is the place for discussions and questions about Khiva library. We use the GitHub Issue Tracker to manage bug
reports and feature requests.

You can jump right into the package by looking into our Getting Started.

1 Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the
data (Source Wikipedia).

Table of Contents 1

https://gitter.im/shapelets-io/khiva
https://github.com/shapelets/khiva/issues
https://en.wikipedia.org/wiki/Time_series

Khiva Documentation, Release v0.5.0

2 Table of Contents

CHAPTER 1

Getting Started

1.1 Getting the source code

You can download the latest stable released version, or you can get the latest source code version by cloning our git
repository:

git clone https://github.com/shapelets/khiva

1.2 Dependencies

Khiva relies on a number of open source libraries and tools which are required to get it running.

Tools:

• A Build manager to control the compilation process CMake.

• A library dependency manager Conan.

• Python 3.

• Pip3.

• Documentation builders Doxygen and sphinx.

• Graphviz and Dot.

• A C++ compiler, it can be either Clang, GCC or Visual Studio C++ Compiler.

Note: All versions of Khiva Library require a fully C++11-compliant compiler.

Libraries:

• OpenCL library for you GPU card (Intel, AMD, or Nvidia).

3

https://shapelets.io/khiva
https://cmake.org/download/
https://conan.io/
https://www.python.org/downloads/
https://pypi.org/project/pip/
http:://www.doxygen.org
http://www.sphinx-doc.org/en/master/usage/installation.html
https://graphviz.gitlab.io/download/
http://releases.llvm.org/download.html
https://gcc.gnu.org/install/binaries.html
https://www.visualstudio.com/es
https://software.intel.com/en-us/intel-opencl/download
https://support.amd.com/en-us/download
https://developer.nvidia.com/opencl

Khiva Documentation, Release v0.5.0

• To run on accelerators like GPUs, Arrayfire 3.6.2. Note that in order to use Arrayfire on Windows you need to
install the Visual Studio 2015 (x64) runtime libraries.

• To test the functionality provided by Khiva, Google Test.

• To benchmark Khiva, Google Benchmark.

• Boost.

• Eigen.

1.3 Windows

1.3.1 Installation

Prerequisites

• Install Python-64bits and add the installation path to the environment variable path, 32-bits version won’t work.

• Install ArrayFire 3.6.2 and add the installation path to the environment variable path.

• Install Vcpkg and add the installation path to the environment variable path.

• Install chocolatey to manage windows dependencies and add the installation path to the environment variable
path.

Once we have installed all Khiva dependencies, we are ready to install Khiva by using the installers (Option 1) or from
source code (Option 2).

(Option 1) Build using a batch installer

In the tools directory you can find the script install.bat. You must indicate the path to your vcpkg installation directory.

• Usage: install.bat <path_to_vcpkg>

• Example: install.bat c:vcpkg

(Option 2) Build from source code

If you prefer, you can build Khiva step by step. First, go to the source directory.

• Run choco install cmake.install -NoNewWindow -Wait Note: Add the installation path to the
environment variable path and before than chocolately environment variable path.

• Run choco install doxygen.install -NoNewWindow -Wait.

• Run choco install graphviz -NoNewWindow -Wait.

• Run python -m pip install --upgrade pip.

• Run pip3 install sphinx breathe sphinx_rtd_theme.

• Run vcpkg install --triplet x64-windows gtest eigen3 benchmark boost.

• Create a build folder in the root path of the project.

• Browse inside the build folder.

4 Chapter 1. Getting Started

https://arrayfire.com/download/
https://www.microsoft.com/en-in/download/details.aspx?id=48145
https://github.com/google/googletest
https://github.com/google/benchmark
https://www.boost.org/users/download/
https://bitbucket.org/eigen/eigen/downloads/?tab=tags
https://www.python.org/downloads
https://arrayfire.com/download/
https://docs.microsoft.com/es-es/cpp/vcpkg#installation
https://chocolatey.org/

Khiva Documentation, Release v0.5.0

• Run cmake .. -DCMAKE_TOOLCHAIN_FILE="<PATH_TO_VPKG>/scripts/buildsystems/
vcpkg.cmake" -DKHIVA_USE_CONAN=OFF -G "Visual Studio 15 2017 Win64" (Note:
Replace <PATH_TO_VPKG> with your vcpkg installation path and do not forget to clean the build directory
every time before running this command).

• Run cmake --build . --config Release -- /m to compile.

Install Khiva library

To install Khiva just execute the following command:

• Run cmake -DBUILD_TYPE=Release -P cmake_install.cmake.

1.3.2 Generating the Khiva installer

We use Cpack and NSIS to generate the installer.

Notes: Before generating the installer, the project must be built by following the steps in the previous Build from
source code section. The generated package is stored in the build folder.

• Run choco install nsis -NoNewWindow -Wait.

• The installer can be generated running the command cpack -G NSIS.

Note: We use the cpack command from cmake, be aware chocolatey has another cpack command. If you
cannot run the proper command, check out the path from cmake is placed before the path from chocolatey in the
environment variable path.

1.3.3 Generating documentation

• Run pip install sphinx to install Sphinx.

• Browse to the root path of the project.

• Run sphinx-build.exe -b html doc/sphinx/source/ build/doc/html/.

1.4 Linux

We use Ubuntu 16.04 LTS as our linux distribution example.

1.4.1 Prerequisites

• Install Python-64bits or run apt-get install python3 python3-pip, 32-bits version won’t work.

• Download ArrayFire 3.6.2.

• Create destination folder sudo mkdir -p /opt/arrayfire

• Install ArrayFire sudo bash arrayfire/ArrayFire-v3.6.2_Linux_x86_64.sh
--prefix=/opt/arrayfire --skip-license

Once we have installed all Khiva dependencies, we are ready to install Khiva from source code or by using the
installers.

1.4. Linux 5

http://www.sphinx-doc.org/es/stable/install.html#windows-install-python-and-sphinx
http://www.ubuntu.com
https://www.python.org/downloads
http://arrayfire.s3.amazonaws.com/3.6.2/ArrayFire-v3.6.2_Linux_x86_64.sh

Khiva Documentation, Release v0.5.0

1.4.2 Build from source code

First, go to the source directory.

conan remote add conan-mpusz https://api.bintray.com/conan/mpusz/conan-mpusz
mkdir build
cd build
conan install .. --build missing
cmake ..
make -j8
make install

It installs the library in /usr/local/lib and /usr/local/include folders.

In case ArrayFire is not installed in the default directory, it is required to add the Arrayfire lib folder to the
LD_LIBRARY_PATH environment variable.

export LD_LIBRARY_PATH="/pathToArrayfire/arrayfire/lib:$LD_LIBRARY_PATH"

1.4.3 Install Khiva library from source code

• Run make install.

1.4.4 Generating the khiva installer

We use CPack to generate the installers from source code.

Notes: Before generating the installer the project should be built following the process explained in the previous
Build from source code section. The generated package will be stored in the build folder.

For linux, either a deb or a rpm installer package can be generated. This could be done by running the command
cpack -G DEB or cpack -G RPM respectively inside the build folder.

1.4.5 Generating documentation

We use sphinx + doxygen to generate our documentation. You need to install the following packages:

• Sphinx: brew install sphinx.

• Doxygen: brew install doxygen.

• Read the Docs Theme: pip install sphinx_rtd_theme.

• Breathe: pip install breathe.

To generate the khiva documentation run the following command.

• Run make documentation.

1.5 Mac OS

1.5.1 Prerequisites

• Install Python-64bits or just run brew install python3, 32-bits version won’t work.

6 Chapter 1. Getting Started

https://www.python.org/downloads

Khiva Documentation, Release v0.5.0

• Install ArrayFire 3.6.2 and then execute the following lines to move the ArrayFire files from the default instal-
lation directory to the system path for libraries:

sudo mv /opt/arrayfire/include/* /usr/local/include
sudo mv /opt/arrayfire/lib/* /usr/local/lib
sudo mv /opt/arrayfire/share/* /usr/local/share
sudo rm -rf /opt/arrayfire

Once we have installed all Khiva dependencies, we are ready to build and install Khiva, either by using the installers
of from source code.

1.5.2 Build from source code

First, go to the directory where the source code is stored:

conan remote add conan-mpusz https://api.bintray.com/conan/mpusz/conan-mpusz
mkdir build
cd build
conan install .. --build missing
cmake ..
make -j8
make install

It installs the library in /usr/local/lib and /usr/local/include folders.

1.5.3 Install Khiva library from source code

• Run make install.

1.5.4 Generating the khiva installer

For Mac OS, the installer can be generated by running the command cpack -G productbuild inside the build
folder. Note that, before generating the installer you have to follow the previous Build from source code
section.

1.5.5 Generating documentation

We use sphinx + doxygen to generate our documentation. You will need to install the following packages:

• Sphinx: brew install sphinx.

• Doxygen: brew install doxygen.

• Read the Docs Theme: pip install sphinx_rtd_theme.

• Breathe: pip install breathe.

To generate the khiva documentation run the following command.

• make documentation.

1.5. Mac OS 7

http://arrayfire.s3.amazonaws.com/3.6.2/ArrayFire-v3.6.2_OSX_x86_64.pkg

Khiva Documentation, Release v0.5.0

8 Chapter 1. Getting Started

CHAPTER 2

Khiva API

This is the list of namespaces that comprise the Khiva library.

2.1 Namespace Array

namespace array

Functions

af::array createArray(const void *data, unsigned ndims, const dim_t *dims, int type)
Creates an af::array.

Return af::array Containing the data.

Parameters

• data: Data used to create the af::array.

• ndims: Number of dimensions of data.

• dims: Cardinality of dimensions of data.

• type: Data type.

void deleteArray(af_array array)
Decreases the references count for the given array.

Parameters

• array: The Array to be deleted.

void getData(const af::array &array, void *data)
Retrieves the data from the device to the host.

9

Khiva Documentation, Release v0.5.0

Parameters

• array: The Array that contains the data to be retrieved.

• data: Pointer to a preallocated block of memory in the host.

af::dim4 getDims(const af::array &array)
Returns the dimensions from a given array.

Return af::dim4 The dimensions.

Parameters

• array: Array from which to get the dimensions.

int getType(const af::array &array)
Gets the type of the array.

Return int Value of the Dtype enumeration.

Parameters

• array: The array to obtain the type from.

af::array join(int dim, const af::array &first, const af::array &second)
Joins the first and second arrays along the specified dimension.

Return af::array The result of joining first and second along the specified dimension.

Parameters

• dim: The dimension along which the join occurs.

• first: The first input array.

• second: The second input array.

void print(const af::array &array)
Prints the content of an array.

Parameters

• array: The array to be printed.

af::array from_af_array(const af_array array)
Creates an af::array from its af_array C pointer. The resulting array does not acquire the input pointer
passed. User of this function is responsible to release it.

Parameters

• array: The array to be printed.

af_array increment_ref_count(const af_array array)
Increments the reference count of the af_array C pointer passed throwing if there is an error. The user of
this function is responsible to release the returned array by calling deleteArray.

Parameters

• array: The array whose reference count is going to be incremented.

10 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

template <typename T>
std::vector<int> getRowsWithMaximals(const khiva::array::Array<T> &a)

Gets the indices of all rows containing a maximal.

Return std::vector<int> with the indices of the rows with maximals.

Parameters

• a: The input array.

template <typename T>
std::vector<int> getIndexMaxColumns(const std::vector<T> &r)

Gets the indices of the columns with maximals.

Return std::vector<int> with the indices of the columns with maximals.

Parameters

• r: The input row.

template <class T>
class Array

#include </home/docs/checkouts/readthedocs.org/user_builds/khiva/checkouts/latest/include/khiva/array.h>
Array class, This class provides functionality manage Arrays on the host side.

Public Functions

Array()
Default Constructor of Array class.

Array(const af::array &in)
Constructor of Array class which receives and af::array.

Parameters
• in: The input af::array.

~Array()
Default destructor of Array class.

void setNumX(int val)
Sets the cardinality of the first dimension.

Parameters
• val: The value to be set.

void setNumY(int val)
Sets the cardinality of the second dimension.

Parameters
• val: The value to be set.

void setNumW(int val)
Sets the cardinality of the third dimension.

Parameters
• val: The value to be set.

2.1. Namespace Array 11

Khiva Documentation, Release v0.5.0

void setNumZ(int val)
Sets the cardinality of the fourth dimension.

Parameters
• val: The value to be set.

void setData(T *pd)
Sets the data to be stored in the Array.

Parameters
• pd: The data to be stored.

int getNumX() const
Gets the cardinality of the first dimension.

Return int the Cardinality of the first dimension.

int getNumY() const
Gets the cardinality of the second dimension.

Return int the Cardinality of the second dimension.

int getNumW() const
Gets the cardinality of the third dimension.

Return int the Cardinality of the third dimension.

int getNumZ() const
Gets the cardinality of the fourth dimension.

Return int the Cardinality of the fourth dimension.

int getNumElements() const
Gets the number of elements in data.

Return int the Cardinality of the number of elements.

std::vector<T> getRow(int idx) const
Gets the row number given by idx.

Return std::vector Containing the selected row.
Parameters

• idx: The row number to be extracted.

std::vector<T> getColumn(int idx) const
Gets the column number given by idx.

Return std::vector Containing the selected column.
Parameters

• idx: The column number to be extracted.

T getElement(int row, int column) const
Gets the element given by row and column.

Return T The element to be extracted.
Parameters

• row: The row number.
• column: The column number.

T *getData()
Gets a pointer to the data stored in the array.

12 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

Return T Pointer to data.

bool isEmpty()
Checks whether The Array is empty or not.

Return True if the Array is empty, false otherwise.

void print()
Prints the content of the array.

2.2 Namespace Clustering

namespace clustering

Functions

void kMeans(const af::array &tss, int k, af::array ¢roids, af::array &labels, float tolerance =
0.0000000001, int maxIterations = 100)

Calculates the k-means algorithm.

[1] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28, 2,
Pages 129-137.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• k: The number of means to be computed.

• centroids: The resulting means or centroids.

• labels: The resulting labels of each time series which is the closest centroid.

• tolerance: The error tolerance to stop the computation of the centroids.

• maxIterations: The maximum number of iterations allowed.

void kShape(const af::array &tss, int k, af::array ¢roids, af::array &labels, float tolerance =
0.0000000001, int maxIterations = 100)

Calculates the k-shape algorithm.

[1] John Paparrizos and Luis Gravano. 2016. k-Shape: Efficient and Accurate Clustering of Time Series.
SIGMOD Rec. 45, 1 (June 2016), 69-76.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• k: The number of means to be computed.

• centroids: The resulting means or centroids.

• labels: The resulting labels of each time series which is the closest centroid.

• tolerance: The error tolerance to stop the computation of the centroids.

• maxIterations: The maximum number of iterations allowed.

2.2. Namespace Clustering 13

Khiva Documentation, Release v0.5.0

2.3 Namespace Dimensionality

namespace dimensionality

Typedefs

using khiva::dimensionality::Point = typedef std::pair<float, float>

using khiva::dimensionality::Segment = typedef std::pair<int, int>

Functions

std::vector<Point> PAA(const std::vector<Point> &points, int bins)
Piecewise Aggregate Approximation (PAA) approximates a time series 𝑋 of length 𝑛 into vector �̄� =
(�̄�1, . . . , �̄�𝑀) of any arbitrary length 𝑀 ≤ 𝑛 where each of 𝑥𝑖 is calculated as follows:

�̄�𝑖 =
𝑀

𝑛

(𝑛/𝑀)𝑖∑︁
𝑗=𝑛/𝑀(𝑖−1)+1

𝑥𝑗 .

Which simply means that in order to reduce the dimensionality from 𝑛 to 𝑀 , we first divide the original
time series into 𝑀 equally sized frames and secondly compute the mean values for each frame. The
sequence assembled from the mean values is the PAA approximation (i.e., transform) of the original time
series.

Return result A vector of Points with the reduced dimensionality.

Parameters

• points: Set of points.

• bins: Sets the total number of divisions.

af::array PAA(const af::array &a, int bins)
Piecewise Aggregate Approximation (PAA) approximates a time series 𝑋 of length 𝑛 into vector �̄� =
(�̄�1, . . . , �̄�𝑀) of any arbitrary length 𝑀 ≤ 𝑛 where each of 𝑥𝑖 is calculated as follows:

�̄�𝑖 =
𝑀

𝑛

(𝑛/𝑀)𝑖∑︁
𝑗=𝑛/𝑀(𝑖−1)+1

𝑥𝑗 .

Which simply means that in order to reduce the dimensionality from 𝑛 to 𝑀 , we first divide the original
time series into 𝑀 equally sized frames and secondly compute the mean values for each frame. The
sequence assembled from the mean values is the PAA approximation (i.e., transform) of the original time
series.

Return af::array An array of points with the reduced dimensionality.

Parameters

• a: Set of points.

• bins: Sets the total number of divisions.

14 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

af::array PIP(const af::array &ts, int numberIPs)
Calculates the number of Perceptually Important Points (PIP) in the time series.

[1] Fu TC, Chung FL, Luk R, and Ng CM. Representing financial time series based on data point impor-
tance. Engineering Applications of Artificial Intelligence, 21(2):277-300, 2008.

Return af::array Array with the most Perceptually Important numPoints.

Parameters

• ts: Expects an input array whose dimension zero is the length of the time series.

• numberIPs: The number of points to be returned.

std::vector<Point> PLABottomUp(const std::vector<Point> &ts, float maxError)
Applies the Piecewise Linear Approximation (PLA BottomUP) to the time series.

[1] Zhu Y, Wu D, Li Sh (2007). A Piecewise Linear Representation Method of Time Series Based on
Feature Points. Knowledge-Based Intelligent Information and Engineering Systems 4693:1066-1072.

Return std::vector Vector with the reduced number of points.

Parameters

• ts: Expects an input vector containing the set of points to be reduced.

• maxError: The maximum approximation error allowed.

af::array PLABottomUp(const af::array &ts, float maxError)
Applies the Piecewise Linear Approximation (PLA BottomUP) to the time series.

[1] Zhu Y, Wu D, Li Sh (2007). A Piecewise Linear Representation Method of Time Series Based on
Feature Points. Knowledge-Based Intelligent Information and Engineering Systems 4693:1066-1072.

Return af::array with the reduced number of points.

Parameters

• ts: Expects an af::array containing the set of points to be reduced. The first component of the
points in the first column and the second component of the points in the second column.

• maxError: The maximum approximation error allowed.

std::vector<Point> PLASlidingWindow(const std::vector<Point> &ts, float maxError)
Applies the Piecewise Linear Approximation (PLA Sliding Window) to the time series.

[1] Zhu Y, Wu D, Li Sh (2007). A Piecewise Linear Representation Method of Time Series Based on
Feature Points. Knowledge-Based Intelligent Information and Engineering Systems 4693:1066-1072.

Return std::vector Vector with the reduced number of points.

Parameters

• ts: Expects an input vector containing the set of points to be reduced.

• maxError: The maximum approximation error allowed.

af::array PLASlidingWindow(const af::array &ts, float maxError)
Applies the Piecewise Linear Approximation (PLA Sliding Window) to the time series.

[1] Zhu Y, Wu D, Li Sh (2007). A Piecewise Linear Representation Method of Time Series Based on
Feature Points. Knowledge-Based Intelligent Information and Engineering Systems 4693:1066-1072.

2.3. Namespace Dimensionality 15

Khiva Documentation, Release v0.5.0

Return af::array with the reduced number of points.

Parameters

• ts: Expects an af::array containing the set of points to be reduced. The first component of the
points in the first column and the second component of the points in the second column.

• maxError: The maximum approximation error allowed.

std::vector<Point> ramerDouglasPeucker(const std::vector<Point> &pointList, double epsilon)
The Ramer–Douglas–Peucker algorithm (RDP) is an algorithm for reducing the number of points in a
curve that is approximated by a series of points. It reduces a set of points depending on the perpendicular
distance of the points and epsilon, the greater epsilon, more points are deleted.

[1] Urs Ramer, “An iterative procedure for the polygonal approximation of plane curves”, Computer
Graphics and Image Processing, 1(3), 244–256 (1972) doi:10.1016/S0146-664X(72)80017-0.

[2] David Douglas & Thomas Peucker, “Algorithms for the reduction of the number of points required to
represent a

digitized line or its caricature”, The Canadian Cartographer 10(2), 112–122 (1973) doi:10.3138/FM57-
6770-U75U-7727

Return std:vector<khiva::dimensionality::Point> with the selected points.

Parameters

• pointList: Set of input points.

• epsilon: It acts as the threshold value to decide which points should be considered meaningful
or not.

af::array ramerDouglasPeucker(const af::array &pointList, double epsilon)
The Ramer–Douglas–Peucker algorithm (RDP) is an algorithm for reducing the number of points in a
curve that is approximated by a series of points. It reduces a set of points depending on the perpendicular
distance of the points and epsilon, the greater epsilon, more points are deleted.

[1] Urs Ramer, “An iterative procedure for the polygonal approximation of plane curves”, Computer
Graphics and Image Processing, 1(3), 244–256 (1972) doi:10.1016/S0146-664X(72)80017-0.

[2] David Douglas & Thomas Peucker, “Algorithms for the reduction of the number of points required to
represent a

digitized line or its caricature”, The Canadian Cartographer 10(2), 112–122 (1973) doi:10.3138/FM57-
6770-U75U-7727

Return af::array with the selected points.

Parameters

• pointList: Set of input points.

• epsilon: It acts as the threshold value to decide which points should be considered meaningful
or not.

af::array SAX(const af::array &a, int alphabetSize)
Symbolic Aggregate approXimation (SAX). It transforms a numeric time series into a time series of sym-
bols with the same size. The algorithm was proposed by Lin et al.) and extends the PAA-based approach
inheriting the original algorithm simplicity and low computational complexity while providing satisfac-
tory sensitivity and selectivity in range query processing. Moreover, the use of a symbolic representation

16 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

opened a door to the existing wealth of data-structures and string-manipulation algorithms in computer
science such as hashing, regular expression, pattern matching, suffix trees, and grammatical inference.

[1] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003) A Symbolic Representation of Time Series, with
Implications for Streaming Algorithms. In proceedings of the 8th ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery. San Diego, CA. June 13.

Return result An array of symbols.

Parameters

• a: Array with the input time series.

• alphabetSize: Number of element within the alphabet.

std::vector<Point> visvalingam(const std::vector<Point> &pointList, int64_t numPoints, int64_t
scale = 1000000000)

Reduces a set of points by applying the Visvalingam method (minimum triangle area) until the number of
points is reduced to numPoints.

[1] M. Visvalingam and J. D. Whyatt, Line generalisation by repeated elimination of points, The Carto-
graphic Journal, 1993.

Return std:vector<khiva::dimensionality::Point> where the number of points has been reduced to num-
Points.

Parameters

• pointList: Expects an input vector of points.

• numPoints: Sets the number of points returned after the execution of the method.

• scale: Sets the precision used to compute the areas of the triangularization, the longer, the more
accurate.

af::array visvalingam(const af::array &pointList, int numPoints)
Reduces a set of points by applying the Visvalingam method (minimum triangle area) until the number of
points is reduced to numPoints.

[1] M. Visvalingam and J. D. Whyatt, Line generalisation by repeated elimination of points, The Carto-
graphic Journal, 1993.

Return af::array where the number of points has been reduced to numPoints.

Parameters

• pointList: Expects an input array formed by to columns where the first column is interpreted
as the x cordinate of a point and the second column as the y coordinate.

• numPoints: Sets the number of points returned after the execution of the method.

2.4 Namespace Distances

namespace distances

2.4. Namespace Distances 17

Khiva Documentation, Release v0.5.0

Functions

double dtw(const std::vector<double> &a, const std::vector<double> &b)
Calculates the Dynamic Time Warping Distance.

Return array The resulting distance between a and b.

Parameters

• a: The input time series of reference.

• b: The input query.

af::array dtw(const af::array &tss)
Calculates the Dynamic Time Warping Distance.

Return af::array An upper triangular matrix where each position corresponds to the distance between
two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the
distance between time series 0 and time series 1.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array euclidean(const af::array &tss)
Calculates euclidean distances between time series.

Return af::array An upper triangular matrix where each position corresponds to the distance between
two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the
distance between time series 0 and time series 1.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array hamming(const af::array &tss)
Calculates hamming distances between time series.

Return af::array An upper triangular matrix where each position corresponds to the distance between
two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the
distance between time series 0 and time series 1.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array manhattan(const af::array &tss)
Calculates manhattan distances between time series.

Return af::array An upper triangular matrix where each position corresponds to the distance between
two time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the
distance between time series 0 and time series 1.

Parameters

18 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array sbd(const af::array &tss)
Calculates the Shape-Based distance (SBD). It computes the normalized cross-correlation and it returns
1.0 minus the value that maximizes the correlation value between each pair of time series.

Return array An upper triangular matrix where each position corresponds to the distance between two
time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the
distance between time series 0 and time series 1.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array squaredEuclidean(const af::array &tss)
Calculates non squared version of the euclidean distance.

Return array An upper triangular matrix where each position corresponds to the distance between two
time series. Diagonal elements will be zero. For example: Position row 0 column 1 records the
distance between time series 0 and time series 1.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

2.5 Namespace Features

namespace features

Typedefs

using khiva::features::AggregationFuncDimT = typedef af::array (*)(const af::array &, const dim_t)

using khiva::features::AggregationFuncBoolDimT = typedef af::array (*)(const af::array &, bool, const dim_t)

using khiva::features::AggregationFuncInt = typedef af::array (*)(const af::array &, const int)

Functions

af::array absEnergy(const af::array &base)
Calculates the absolute energy of the time series which is the sum over the squared values.

𝐸 =
∑︁

𝑖=1,...,𝑛

𝑥2
𝑖

.

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
contains the sum of the squares values in the time series.

Parameters

2.5. Namespace Features 19

Khiva Documentation, Release v0.5.0

• base: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array absoluteSumOfChanges(const af::array &tss)
Calculates the sum over the absolute value of consecutive changes in the time series.∑︁

𝑖=1,...,𝑛−1

| 𝑥𝑖+1 − 𝑥𝑖 |

.

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
contains absolute value of consecutive changes in the time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array aggregatedAutocorrelation(const af::array &tss, AggregationFuncBoolDimT ag-
gregationFunction)

Calculates the value of an aggregation function f_agg (e.g. var or mean) of the autocorrelation (Compare
to http://en.wikipedia.org/wiki/Autocorrelation#Estimation), taken over different all possible lags (1 to
length of x).

1

𝑛− 1

∑︁
𝑙=1,...,𝑛

1

(𝑛− 𝑙)𝜎2

𝑛−𝑙∑︁
𝑡=1

(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑙 − 𝜇),

where 𝑛 is the length of the time series 𝑋𝑖, 𝜎2 its variance and 𝜇 its mean.

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
contains the aggregated correlation for each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• aggregationFunction: The function to summarise all autocorrelation with different lags.

af::array aggregatedAutocorrelation(const af::array &tss, AggregationFuncDimT aggrega-
tionFunction)

Calculates the value of an aggregation function f_agg (e.g. var or mean) of the autocorrelation (Compare
to http://en.wikipedia.org/wiki/Autocorrelation#Estimation), taken over different all possible lags (1 to
length of x).

1

𝑛− 1

∑︁
𝑙=1,...,𝑛

1

(𝑛− 𝑙)𝜎2

𝑛−𝑙∑︁
𝑡=1

(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑙 − 𝜇),

where 𝑛 is the length of the time series 𝑋𝑖, 𝜎2 its variance and 𝜇 its mean.

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
contains the aggregated correlation for each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

20 Chapter 2. Khiva API

http://en.wikipedia.org/wiki/Autocorrelation#Estimation
http://en.wikipedia.org/wiki/Autocorrelation#Estimation

Khiva Documentation, Release v0.5.0

• aggregationFunction: The function to summarise all autocorrelation with different lags.

af::array aggregatedAutocorrelation(const af::array &tss, AggregationFuncInt aggregation-
Function)

Calculates the value of an aggregation function f_agg (e.g. var or mean) of the autocorrelation (Compare
to http://en.wikipedia.org/wiki/Autocorrelation#Estimation), taken over different all possible lags (1 to
length of x).

1

𝑛− 1

∑︁
𝑙=1,...,𝑛

1

(𝑛− 𝑙)𝜎2

𝑛−𝑙∑︁
𝑡=1

(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑙 − 𝜇),

where 𝑛 is the length of the time series 𝑋𝑖, 𝜎2 its variance and 𝜇 its mean.

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
contains the aggregated correlation for each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• aggregationFunction: The function to summarise all autocorrelation with different lags.

void aggregatedLinearTrend(const af::array &t, long chunkSize, AggregationFuncDimT ag-
gregationFunction, af::array &slope, af::array &intercept, af::array
&rvalue, af::array &pvalue, af::array &stderrest)

Calculates a linear least-squares regression for values of the time series that were aggregated over chunks
versus the sequence from 0 up to the number of chunks minus one.

Parameters

• t: The time series to calculate the features of.

• chunkSize: The chunkSize used to aggregate the data.

• aggregationFunction: Function to be used in the aggregation.

• slope: Slope of the regression line.

• intercept: Intercept of the regression line.

• rvalue: Correlation coefficient.

• pvalue: Two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero,
using Wald Test with t-distribution of the test statistic.

• stderrest: Standard error of the estimated gradient.

void aggregatedLinearTrend(const af::array &t, long chunkSize, AggregationFuncInt aggre-
gationFunction, af::array &slope, af::array &intercept, af::array
&rvalue, af::array &pvalue, af::array &stderrest)

Calculates a linear least-squares regression for values of the time series that were aggregated over chunks
versus the sequence from 0 up to the number of chunks minus one.

Parameters

• t: The time series to calculate the features of.

• chunkSize: The chunkSize used to aggregate the data.

• aggregationFunction: Function to be used in the aggregation.

2.5. Namespace Features 21

http://en.wikipedia.org/wiki/Autocorrelation#Estimation

Khiva Documentation, Release v0.5.0

• slope: Slope of the regression line.

• intercept: Intercept of the regression line.

• rvalue: Correlation coefficient.

• pvalue: Two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero,
using Wald Test with t-distribution of the test statistic.

• stderrest: Standard error of the estimated gradient.

af::array approximateEntropy(const af::array &tss, int m, float r)
Calculates a vectorized Approximate entropy algorithm (https://en.wikipedia.org/wiki/Approximate_
entropy). For short time series, this method is highly dependent on the parameters, but should be sta-
ble for N > 2000, see:

[1] Yentes et al., The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets,
(2012). Other shortcomings and alternatives discussed in: Richman & Moorman, Physiological time-series
analysis using approximate entropy and sample entropy, (2000).

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
contains the vectorized Approximate entropy for all the input time series in tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• m: Length of compared run of data.

• r: Filtering level, must be positive.

af::array autoCorrelation(const af::array &tss, long maxLag, bool unbiased = false)
Calculates the autocorrelation of the specified lag for the given time series, according to the formula [1].

1

(𝑛− 𝑙)𝜎2

𝑛−𝑙∑︁
𝑡=1

(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑙 − 𝜇),

where 𝑛 is the length of the time series 𝑋𝑖, 𝜎2 its variance and 𝜇 its mean, 𝑙 denotes the lag.

[1] https://en.wikipedia.org/wiki/Autocorrelation#Estimation

Return af::array The autocorrelation value for the given time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• maxLag: The maximum lag to compute.

• unbiased: Determines whether it divides by (n - lag) (if true), or n (if false).

af::array autoCovariance(const af::array &xss, bool unbiased = false)
Calculates the auto-covariance the given time series.

Return af::array The auto-covariance value for the given time series.

Parameters

22 Chapter 2. Khiva API

https://en.wikipedia.org/wiki/Approximate_entropy
https://en.wikipedia.org/wiki/Approximate_entropy
https://en.wikipedia.org/wiki/Autocorrelation#Estimation

Khiva Documentation, Release v0.5.0

• xss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• unbiased: Determines whether it divides by n - lag (if true) or n (if false).

af::array binnedEntropy(const af::array &tss, int max_bins)
Calculates the binned entropy for the given time series and number of bins. It calculates the value of:

𝑚𝑖𝑛(𝑚𝑎𝑥_𝑏𝑖𝑛𝑠,𝑙𝑒𝑛(𝑥))∑︁
𝑘=0

𝑝𝑘𝑙𝑜𝑔(𝑝𝑘) · 1(𝑝𝑘>0),

where 𝑝𝑘 is the percentage of samples in bin 𝑘.

Return af::array The binned entropy value for the given time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• max_bins: The number of bins.

af::array c3(const af::array &tss, long lag)
This function calculates the value of:

1

𝑛− 2𝑙𝑎𝑔

𝑛−2𝑙𝑎𝑔∑︁
𝑖=0

𝑥2
𝑖+2·𝑙𝑎𝑔 · 𝑥𝑖+𝑙𝑎𝑔 · 𝑥𝑖,

which is:

E[𝐿2(𝑋)2 · 𝐿(𝑋) ·𝑋],

where E is the mean and 𝐿 is the lag operator. It was proposed in [1] as a measure of non linearity in the
time series.

[1] Schreiber, T. and Schmitz, A., Discrimination power of measures for nonlinearity in a time series,
PHYSICAL REVIEW E, VOLUME 55, NUMBER 5, (1997).

Return af::array The non-linearity value for the given time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• lag: The lag.

af::array cidCe(const af::array &tss, bool zNormalize = false)
This function calculator is an estimate for a time series complexity 1. It calculates the value of:⎯⎸⎸⎷𝑛−2𝑙𝑎𝑔∑︁

𝑖=0

(𝑥𝑖 − 𝑥𝑖+1)2.

.

[1] Batista, Gustavo EAPA, et al (2014). CID: an efficient complexity-invariant distance for time series.
Data Mining and Knowledge Difscovery 28.3 (2014): 634-669.

2.5. Namespace Features 23

A more complex time series has more peaks, valleys etc.

Khiva Documentation, Release v0.5.0

Return af::array The complexity value for the given time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• zNormalize: Controls whether the time series should be z-normalized or not.

af::array countAboveMean(const af::array &tss)
Calculates the number of values in the time series that are higher than the mean.

Return af::array The number of values in the time series that are higher than the mean.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array countBelowMean(const af::array &tss)
Calculates the number of values in the time series that are lower than the mean.

Return af::array The number of values in the time series that are lower than the mean.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array crossCovariance(const af::array &xss, const af::array &yss, bool unbiased = true)
Calculates the cross-covariance of the given time series.

Return af::array The cross-covariance value for the given time series.

Parameters

• xss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• yss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• unbiased: Determines whether it divides by n - lag (if true) or n (if false).

af::array crossCorrelation(const af::array &xss, const af::array &yss, bool unbiased = true)
Calculates the cross-correlation of the given time series.

Return af::array The cross-correlation value for the given time series.

Parameters

• xss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• yss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• unbiased: Determines whether it divides by n - lag (if true) or n (if false).

24 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

af::array cwtCoefficients(const af::array &tss, const af::array &widths, int coeff, int w)
Calculates a Continuous wavelet transform for the Ricker wavelet, also known as the “Mexican hat
wavelet” which is defined by:

2√
3𝑎𝜋

1
4

(1 − 𝑥2

𝑎2
)𝑒𝑥𝑝(− 𝑥2

2𝑎2
),

where 𝑎 is the width parameter of the wavelet function. This feature calculator takes three different param-
eter: widths, coeff and w. The feature calculator takes all the different widths arrays and then calculates
the cwt one time for each different width array. Then the values for the different coefficient for coeff and
width w are returned.

Return af::array Result of calculated coefficients.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• widths: Array that contains all different widths.

• coeff: Coefficient of interest.

• w: Width of interest.

af::array energyRatioByChunks(af::array tss, long numSegments, long segmentFocus)
Calculates the sum of squares of chunk i out of N chunks expressed as a ratio with the sum of squares over
the whole series. segmentFocus should be lower than the number of segments.

Return af::array The energy ratio by chunk of the time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• numSegments: The number of segments to divide the series into.

• segmentFocus: The segment number (starting at zero) to return a feature on.

af::array fftAggregated(const af::array &tss)
Calculates the spectral centroid (mean), variance, skew, and kurtosis of the absolute fourier transform
spectrum.

Return af::array The spectral centroid (mean), variance, skew, and kurtosis of the absolute fourier trans-
form spectrum.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

void fftCoefficient(const af::array &tss, long coefficient, af::array &real, af::array &imag,
af::array &abs, af::array &angle)

Calculates the fourier coefficients of the one-dimensional discrete Fourier Transform for real input by
using fast fourier transformation algorithm,

𝐴𝑘 =

𝑛−1∑︁
𝑚=0

𝑎𝑚 exp

{︂
−2𝜋𝑖

𝑚𝑘

𝑛

}︂
, 𝑘 = 0, . . . , 𝑛− 1.

.

2.5. Namespace Features 25

Khiva Documentation, Release v0.5.0

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• coefficient: The coefficient to extract from the FFT.

• real: The real part of the coefficient.

• imag: The imaginary part of the coefficient.

• abs: The absolute value of the coefficient.

• angle: The angle of the coefficient.

af::array firstLocationOfMaximum(const af::array &tss)
Calculates the first relative location of the maximal value for each time series.

Return af::array The first relative location of the maximum value to the length of the time series, for each
time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array firstLocationOfMinimum(const af::array &tss)
Calculates the first location of the minimal value of each time series. The position is calculated relatively
to the length of the series.

Return af::array the first relative location of the minimal value of each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array friedrichCoefficients(const af::array &tss, int m, float r)
Coefficients of polynomial ℎ(𝑥), which has been fitted to the deterministic dynamics of Langevin model:

(̇𝑥)(𝑡) = ℎ(𝑥(𝑡)) + 𝑅(𝑁)(0, 1)

as described by [1]. For short time series this method is highly dependent on the parameters.

[1] Friedrich et al., Physics Letters A 271, p. 217-222, Extracting model equations from experimental data,
(2000).

Return af::array The coefficients for each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• m: Order of polynom to fit for estimating fixed points of dynamics.

• r: Number of quantiles to use for averaging.

af::array hasDuplicates(const af::array &tss)
Computes if the input time series contain duplicated elements.

26 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

Return af::array Array containing True if the time series contains duplicated elements and false otherwise.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array hasDuplicateMax(const af::array &tss)
Computes if the maximum within time series is duplicated.

Return af::array Array containing True if the maximum value of the time series is duplicated and false
otherwise.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array hasDuplicateMin(const af::array &tss)
Computes if the minimum of input time series is duplicated.

Return af::array Array containing True if the minimum of the time series is duplicated and false other-
wise.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array indexMassQuantile(const af::array &tss, float q)
Calculates the relative index 𝑖 where 𝑞% of the mass of the time series within tss lie at the left of 𝑖. For
example for 𝑞 = 50% this feature calculator will return the mass center of the time series.

Return af::array The relative indices i where q% of the mass of the time series lie at the left of i.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• q: The quantile limit.

af::array kurtosis(const af::array &tss)
Returns the kurtosis of tss (calculated with the adjusted Fisher-Pearson standardized moment coefficient
G2).

Return af::array The kurtosis of tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array largeStandardDeviation(const af::array &tss, float r)
Checks if the time series within tss have a large standard deviation.

𝑠𝑡𝑑(𝑥) > 𝑟 * (𝑚𝑎𝑥(𝑋) −𝑚𝑖𝑛(𝑋)).

.

2.5. Namespace Features 27

Khiva Documentation, Release v0.5.0

Return af::array Array containing True for those time series in tss that have a large standard deviation.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• r: The threshold value.

af::array lastLocationOfMaximum(const af::array &tss)
Calculates the last location of the maximum value of each time series. The position is calculated relatively
to the length of the series.

Return af::array The last relative location of the maximum value of each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array lastLocationOfMinimum(const af::array &tss)
Calculates the last location of the minimum value of each time series. The position is calculated relatively
to the length of the series.

Return af::array The last relative location of the minimum value of each series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array length(const af::array &tss)
Returns the length of the input time series.

Return af::array The length of tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

void linearTrend(const af::array &tss, af::array &pvalue, af::array &rvalue, af::array &intercept,
af::array &slope, af::array &stder)

Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to
length of the time series minus one.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• pvalue: The p-values for all time series.

• rvalue: The r-values for all time series.

• intercept: The intercept values for all time series.

• slope: The slope for all time series.

• stder: The stderr values for all time series.

28 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

af::array localMaximals(const af::array &tss)
Calculates all Local Maximals for the time series in tss.

Return af::array The calculated local maximals for each time series in tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array longestStrikeAboveMean(const af::array &tss)
Calculates the length of the longest consecutive subsequence in tss that is bigger than the mean of tss.

Return af::array the length of the longest consecutive subsequence in the input time series that is bigger
than the mean.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array longestStrikeBelowMean(const af::array &tss)
Calculates the length of the longest consecutive subsequence in tss that is below the mean of tss.

Return af::array The length of the longest consecutive subsequence in the input time series that is below
the mean.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array maxLangevinFixedPoint(const af::array &tss, int m, float r)
Largest fixed point of dynamics max𝑥 ℎ(𝑥) = 0 estimated from polynomial ℎ(𝑥), which has been fitted to
the deterministic dynamics of Langevin model:

�̇�(𝑡) = ℎ(𝑥(𝑡)) + 𝑅(𝑁)(0, 1)

.

[1] Friedrich et al., Extracting model equations from experimental data, Physics Letters A 271, p. 217-222,
(2000).

Return af::array Largest fixed point of deterministic dynamics.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series. NOTE: the time series should be sorted.

• m: Order of polynom to fit for estimating fixed points of dynamics.

• r: Number of quantiles to use for averaging.

af::array maximum(const af::array &tss)
Calculates the maximum value for each time series within tss.

Return af::array The maximum value of each time series within tss.

2.5. Namespace Features 29

Khiva Documentation, Release v0.5.0

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array mean(const af::array &tss)
Calculates the mean value for each time series within tss.

Return af::array The mean value of each time series within tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array meanAbsoluteChange(const af::array &tss)
Calculates the mean over the absolute differences between subsequent time series values in tss.

1

𝑛

∑︁
𝑖=1,...,𝑛−1

|𝑥𝑖+1 − 𝑥𝑖|.

.

Return af::array The mean over the absolute differences between subsequent time series values.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array meanChange(const af::array &tss)
Calculates the mean over the differences between subsequent time series values in tss.

1

𝑛

∑︁
𝑖=1,...,𝑛−1

𝑥𝑖+1 − 𝑥𝑖.

.

Return af::array The mean over the differences between subsequent time series values.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array meanSecondDerivativeCentral(const af::array &tss)
Calculates mean value of a central approximation of the second derivative for each time series in tss.

1

𝑛

∑︁
𝑖=1,...,𝑛−1

1

2
(𝑥𝑖+2 − 2 · 𝑥𝑖+1 + 𝑥𝑖).

.

Return af::array The mean value of a central approximation of the second derivative for each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

30 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

af::array median(const af::array &tss)
Calculates the median value for each time series within tss.

Return af::array The median value of each time series within tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array minimum(const af::array &tss)
Calculates the minimum value for each time series within tss.

Return af::array The minimum value of each time series within tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array numberCrossingM(const af::array &tss, int m)
Calculates the number of m-crossings. A m-crossing is defined as two sequential values where the first
value is lower than m and the next is greater, or viceversa. If you set m to zero, you will get the number of
zero crossings.

Return af::array The number of m-crossings of each time series within tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• m: The m value.

af::array numberCwtPeaks(const af::array &tss, int maxW)
This feature calculator searches for different peaks. To do so, the time series is smoothed by a ricker
wavelet and for widths ranging from 1 to maxW. This feature calculator returns the number of peaks that
occur at enough width scales and with sufficiently high Signal-to-Noise-Ratio (SNR).

Return af::array The number of peaks for each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• maxW: The maximum width to consider.

af::array numberPeaks(af::array tss, int n)
Calculates the number of peaks of at least support 𝑛 in the time series 𝑡𝑠𝑠. A peak of support 𝑛 is defined
as a subsequence of 𝑡𝑠𝑠 where a value occurs, which is bigger than its 𝑛 neighbourgs to the left and to the
right.

[1] Bioinformatics (2006) 22 (17): 2059-2065. doi: 10.1093/bioinformatics/btl355, http://bioinformatics.
oxfordjournals.org/content/22/17/2059.long

Return af::array The number of peaks of at least support 𝑛.

Parameters

2.5. Namespace Features 31

http://bioinformatics.oxfordjournals.org/content/22/17/2059.long
http://bioinformatics.oxfordjournals.org/content/22/17/2059.long

Khiva Documentation, Release v0.5.0

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• n: The support of the peak.

af::array partialAutocorrelation(const af::array &tss, const af::array &lags)
Calculates the value of the partial autocorrelation function at the given lag. The lag 𝑘 partial autocorrelation
of a time series {𝑥𝑡, 𝑡 = 1 . . . 𝑇} equals the partial correlation of 𝑥𝑡 and 𝑥𝑡−𝑘, adjusted for the intermediate
variables {𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1} ([1]). Following [2], it can be defined as:

𝛼𝑘 =
𝐶𝑜𝑣(𝑥𝑡, 𝑥𝑡−𝑘|𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1)√︀

𝑉 𝑎𝑟(𝑥𝑡|𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1)𝑉 𝑎𝑟(𝑥𝑡−𝑘|𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1)

with (a) 𝑥𝑡 = 𝑓(𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1) and (b) 𝑥𝑡−𝑘 = 𝑓(𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1) being AR(k-1) models that can
be fitted by OLS. Be aware that in (a), the regression is done on past values to predict 𝑥𝑡 whereas in (b),
future values are used to calculate the past value 𝑥𝑡−𝑘. It is said in [1] that, for an AR(p), the partial
autocorrelations 𝛼𝑘 will be nonzero for 𝑘 <= 𝑝 and zero for 𝑘 > 𝑝. With this property, it is used to
determine the lag of an AR-Process.

[1] Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting
and control. John Wiley & Sons.

[2] https://onlinecourses.science.psu.edu/stat510/node/62

Return af::array The partial autocorrelation for each time series for the given lag.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• lags: Indicates the lags to be calculated.

af::array percentageOfReoccurringDatapointsToAllDatapoints(const af::array &tss,
bool isSorted = false)

Calculates the percentage of unique values, that are present in the time series more than once.

𝑙𝑒𝑛(different values occurring more than once)

𝑙𝑒𝑛(different values)

This means the percentage is normalized to the number of unique values, in contrast to the percentage-
OfReoccurringValuesToAllValues.

Return af::array The percentage of unique data points, that are present in the time series more than once.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• isSorted: Indicates if the input time series is sorted or not. Defaults to false.

af::array percentageOfReoccurringValuesToAllValues(const af::array &tss, bool is-
Sorted = false)

Calculates the percentage of unique values, that are present in the time series more than once.

number of data points occurring more than once
number of all data points)

This means the percentage is normalized to the number of unique values, in contrast to the percentage-
OfReoccurringDatapointsToAllDatapoints.

32 Chapter 2. Khiva API

https://onlinecourses.science.psu.edu/stat510/node/62

Khiva Documentation, Release v0.5.0

Return af::array The percentage of unique values, that are present in the time series more than once.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• isSorted: Indicates if the input time series is sorted or not. Defaults to false.

af::array quantile(const af::array &tss, const af::array &q, float precision = 100000000)
Returns values at the given quantile.

Return af::array Values at the given quantile.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• q: Percentile(s) at which to extract score(s). One or many.

• precision: Number of decimals expected.

af::array rangeCount(const af::array &tss, float min, float max)
Counts observed values within the interval [min, max).

Return af::array Values at the given range.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• min: Value that sets the lower limit.

• max: Value that sets the upper limit.

af::array ratioBeyondRSigma(const af::array &tss, float r)
Calculates the ratio of values that are more than 𝑟 * 𝑠𝑡𝑑(𝑥) (so 𝑟 sigma) away from the mean of 𝑥.

Return af::array The ratio of values that are more than 𝑟 * 𝑠𝑡𝑑(𝑥) (so 𝑟 sigma) away from the mean of 𝑥.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• r: Number of times that the values should be away from.

af::array ratioValueNumberToTimeSeriesLength(const af::array &tss)
Calculates a factor which is 1 if all values in the time series occur only once, and below one if this is not
the case. In principle, it just returns:

number_unique_values
number_values

.

Return af::array The ratio of unique values with respect to the total number of values.

Parameters

2.5. Namespace Features 33

Khiva Documentation, Release v0.5.0

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array sampleEntropy(const af::array &tss)
Calculates a vectorized sample entropy algorithm. For short time-series this method is highly dependent
on the parameters, but should be stable for N > 2000, see:

[1] Yentes et al., The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets,
(2012).

[2] Richman & Moorman,Physiological time-series analysis using approximate entropy and sample en-
tropy, (2000).

[3] https://en.wikipedia.org/wiki/Sample_entropy

[4] https://www.ncbi.nlm.nih.gov/pubmed/10843903?dopt=Abstract

Return af::array With the same dimensions as tss, whose values (time series in dimension 0) contains the
vectorized sample entropy for all the input time series in tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array skewness(const af::array &tss)
Calculates the sample skewness of tss (calculated with the adjusted Fisher-Pearson standardized moment
coefficient G1).

Return af::array Containing the skewness of each time series in tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array spktWelchDensity(const af::array &tss, int coeff)
Estimates the cross power spectral density of the time series tss at different frequencies. To do so, the
time series is first shifted from the time domain to the frequency domain. Welch’s method computes
an estimate of the power spectral density by dividing the data into overlapping segments, computing a
modified periodogram for each segment and averaging the periodograms.

[1] P. Welch, “The use of the fast Fourier transform for the estimation of power spectra: A method based
on time

averaging over short, modified periodograms”, IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73,
1967.

[2] M.S. Bartlett, “Periodogram Analysis and Continuous Spectra”, Biometrika, vol. 37, pp. 1-16, 1950.

[3] Rabiner, Lawrence R., and B. Gold. “Theory and Application of Digital Signal Processing” Prentice-
Hall, pp. 414-419, 1975.

Return af::array Containing the power spectrum of the different frequencies for each time series in tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• coeff: The coefficient to be returned.

34 Chapter 2. Khiva API

https://en.wikipedia.org/wiki/Sample_entropy
https://www.ncbi.nlm.nih.gov/pubmed/10843903?dopt=Abstract

Khiva Documentation, Release v0.5.0

af::array standardDeviation(const af::array &tss)
Calculates the standard deviation of each time series within tss.

Return af::array The standard deviation of each time series within tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array sumOfReoccurringDatapoints(const af::array &tss, bool isSorted = false)
Calculates the sum of all data points, that are present in the time series more than once.

Return af::array The sum of all data points, that are present in the time series more than once.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• isSorted: Indicates if the input time series is sorted or not. Defaults to false.

af::array sumOfReoccurringValues(const af::array &tss, bool isSorted = false)
Calculates the sum of all values, that are present in the time series more than once.

Return af::array Returns the sum of all values, that are present in the time series more than once.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• isSorted: Indicates if the input time series is sorted or not. Defaults to false.

af::array sumValues(const af::array &tss)
Calculates the sum over the time series tss.

Return af::array An array containing the sum of values in each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array symmetryLooking(const af::array &tss, float r)
Calculates if the distribution of tss looks symmetric. This is the case if

|𝑚𝑒𝑎𝑛(𝑡𝑠𝑠) −𝑚𝑒𝑑𝑖𝑎𝑛(𝑡𝑠𝑠)| < 𝑟 * (𝑚𝑎𝑥(𝑡𝑠𝑠) −𝑚𝑖𝑛(𝑡𝑠𝑠)).

.

Return af::array Denoting if the input time series look symmetric.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• r: The percentage of the range to compare with.

2.5. Namespace Features 35

Khiva Documentation, Release v0.5.0

af::array timeReversalAsymmetryStatistic(const af::array &tss, int lag)
This function calculates the value of:

1

𝑛− 2𝑙𝑎𝑔

𝑛−2𝑙𝑎𝑔∑︁
𝑖=0

𝑥2
𝑖+2·𝑙𝑎𝑔 · 𝑥𝑖+𝑙𝑎𝑔 − 𝑥𝑖+𝑙𝑎𝑔 · 𝑥2

𝑖 ,

which is:

E[𝐿2(𝑋)2 · 𝐿(𝑋) − 𝐿(𝑋) ·𝑋2],

where E is the mean and 𝐿 is the lag operator. It was proposed in [1] as a promising feature to extract from
time series.

[1] Fulcher, B.D., Jones, N.S. (2014). Highly comparative feature-based time-series classification. Knowl-
edge and Data Engineering, IEEE Transactions on 26, 3026–3037.

Return af::array Containing the time reversal asymmetry statistic value in each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• lag: The lag to be computed.

af::array valueCount(const af::array &tss, float v)
Counts occurrences of value in the time series tss.

Return af::array Containing the count of the given value in each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• v: The value to be counted.

af::array variance(const af::array &tss)
Computes the variance for the time series tss.

Return af::array An array containing the variance in each time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array varianceLargerThanStandardDeviation(const af::array &tss)
Calculates if the variance of tss is greater than the standard deviation. In other words, if the variance of tss
is larger than 1.

Return af::array Denoting if the variance of tss is greater than the standard deviation.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

36 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

2.6 Namespace Library

namespace library

Typedefs

typedef khiva_backend Backend

Enums

enum khiva_backend
Values:

KHIVA_BACKEND_DEFAULT = af::Backend::AF_BACKEND_DEFAULT
Default backend order: OpenCL -> CUDA -> CPU.

KHIVA_BACKEND_CPU = af::Backend::AF_BACKEND_CPU
CPU a.k.a sequential algorithms.

KHIVA_BACKEND_CUDA = af::Backend::AF_BACKEND_CUDA
CUDA Compute Backend.

KHIVA_BACKEND_OPENCL = af::Backend::AF_BACKEND_OPENCL
OpenCL Compute Backend.

Functions

std::string backendInfo()
Get information from the active backend.

Return std::string The information of the backend.

void setBackend(khiva::library::Backend be)
Set the backend.

Parameters

• be: The desired backend.

khiva::library::Backend getBackend()
Get the active backend.

Return khiva::library::Backend The active backend.

int getBackends()
Get the available backends.

Return int The available backends.

void setDevice(int device)
Set the device.

Parameters

2.6. Namespace Library 37

Khiva Documentation, Release v0.5.0

• device: The desired device.

int getDevice()
Get the active device.

Return int The active device.

int getDeviceCount()
Get the device count.

Return int The device count.

void setDeviceMemoryInGB(double memory)
Set the memory of the device in use. This information is used for splitting some algorithms and execute
them in batch mode. The default value used if it is not set is 4GB.

Parameters

• memory: The device memory.

namespace internal

Enums

enum Complexity
Values:

LINEAR

CUADRATIC

CUBIC

Functions

void setDeviceMemoryInGB(double memory)
Set the memory of the device in use. This information is used for splitting some algorithms and
execute them in batch mode. The default value used if it is not set is 4GB.

Parameters
• memory: The device memory.

long getValueScaledToMemoryDevice(long value, Complexity complexity)
Get the value scaled to the memory of the device taking into account the Memory complexity.

Return the scaled value.
Parameters

• value: The value to scale.
• complexity: The complexity to scale with.

2.7 Namespace LinAlg

namespace linalg

38 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

Functions

af::array lls(const af::array &A, const af::array &b)
Calculates the minimum norm least squares solution 𝑥 (‖𝐴𝑥− 𝑏‖2) to 𝐴𝑥 = 𝑏. This function uses the
singular value decomposition function of Arrayfire. The actual formula that this function computes is
𝑥 = 𝑉 𝐷 † 𝑈𝑇 𝑏. Where 𝑈 and 𝑉 are orthogonal matrices and 𝐷† contains the inverse values of the
singular values contained in D if they are not zero, and zero otherwise.

Return af::array Contains the solution to the linear equation problem minimizing the norm 2.

Parameters

• A: Coefficient matrix containing the coefficients of the linear equation problem to solve.

• b: Vector with the measured values.

2.8 Namespace Matrix

namespace matrix

Functions

void findBestNOccurrences(const af::array &q, const af::array &t, long n, af::array &dis-
tances, af::array &indexes)

Calculates the N best matches of several queries in several time series.

The result has the following structure:

• 1st dimension corresponds to the nth best match.

• 2nd dimension corresponds to the number of queries.

• 3rd dimension corresponds to the number of time series.

For example, the distance in the position (1, 2, 3) corresponds to the second best distance of the third query
in the fourth time series. The index in the position (1, 2, 3) is the is the index of the subsequence which
leads to the second best distance of the third query in the fourth time series.

Parameters

• q: Array whose first dimension is the length of the query time series and the second dimension is
the number of queries.

• t: Array whose first dimension is the length of the time series and the second dimension is the
number of time series.

• n: Number of matches to return.

• distances: Resulting distances.

• indexes: Resulting indexes.

void mass(const af::array &q, const af::array &t, af::array &distances)
Mueen’s Algorithm for Similarity Search.

The result has the following structure:

• 1st dimension corresponds to the index of the subsequence in the time series.

2.8. Namespace Matrix 39

Khiva Documentation, Release v0.5.0

• 2nd dimension corresponds to the number of queries.

• 3rd dimension corresponds to the number of time series.

For example, the distance in the position (1, 2, 3) correspond to the distance of the third query to the fourth
time series for the second subsequence in the time series.

[1] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau,
Diego Furtado Silva, Abdullah Mueen, Eamonn Keogh (2016). Matrix Profile I: All Pairs Similarity Joins
for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets. IEEE ICDM 2016.

Parameters

• q: Array whose first dimension is the length of the query time series and the second dimension is
the number of queries.

• t: Array whose first dimension is the length of the time series and the second dimension is the
number of time series.

• distances: Resulting distances.

void findBestNMotifs(const af::array &profile, const af::array &index, long m, long n, af::array
&motifs, af::array &motifsIndices, af::array &subsequenceIndices, bool self-
Join = false)

This function extracts the best N motifs from a previously calculated matrix profile.

Parameters

• profile: The matrix profile containing the minimum distance of each subsequence.

• index: The matrix profile index containing where each minimum occurs.

• m: Subsequence length value used to calculate the input matrix profile.

• n: Number of motifs to extract.

• motifs: The distance of the best N motifs.

• motifsIndices: The indices of the best N motifs.

• subsequenceIndices: The indices of the query sequences that produced the minimum re-
ported in the motifs output array.

• selfJoin: Indicates whether the input profile comes from a self join operation or not. It deter-
mines whether the mirror similar region is included in the output or not.

void findBestNDiscords(const af::array &profile, const af::array &index, long m, long n,
af::array &discords, af::array &discordsIndices, af::array &subsequen-
ceIndices, bool selfJoin = false)

This function extracts the best N discords from a previously calculated matrix profile.

Parameters

• profile: The matrix profile containing the minimum distance of each subsequence.

• index: The matrix profile index containing where each minimum occurs.

• m: Subsequence length value used to calculate the input matrix profile.

• n: Number of discords to extract.

• discords: The distance of the best N discords.

• discordsIndices: The indices of the best N discords.

40 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

• subsequenceIndices: The indices of the query sequences that produced the discords re-
ported in the discords output array.

• selfJoin: Indicates whether the input profile comes from a self join operation or not. It deter-
mines whether the mirror similar region is included in the output or not.

void stomp(const af::array &ta, const af::array &tb, long m, af::array &profile, af::array &index)
STOMP algorithm to calculate the matrix profile between ‘ta’ and ‘tb’ using a subsequence length of ‘m’.

[1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning,
Abdullah Mueen, Philip Brisk and Eamonn Keogh (2016). Matrix Profile II: Exploiting a Novel Algorithm
and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. IEEE ICDM 2016.

Parameters

• ta: Query time series.

• tb: Reference time series.

• m: Subsequence length.

• profile: The matrix profile, which reflects the distance to the closer element of the subse-
quence from ‘ta’ in ‘tb’.

• index: The matrix profile index, which points to where the aforementioned minimum is located.

void stomp(const af::array &t, long m, af::array &profile, af::array &index)
STOMP algorithm to calculate the matrix profile between ‘t’ and itself using a subsequence length of ‘m’.
This method filters the trivial matches.

[1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning,
Abdullah Mueen, Philip Brisk and Eamonn Keogh (2016). Matrix Profile II: Exploiting a Novel Algorithm
and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. IEEE ICDM 2016.

Parameters

• t: Query and reference time series.

• m: Subsequence length.

• profile: The matrix profile, which reflects the distance to the closer element of the subse-
quence from ‘t’ in a different location of itself.

• index: The matrix profile index, which points to where the aforementioned minimum is located.

void matrixProfile(const af::array &tss, long m, af::array &profile, af::array &index)
Calculates the matrix profile between ‘t’ and itself using a subsequence length of ‘m’. This method filters
the trivial matches.

[1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning,
Abdullah Mueen, Philip Brisk and Eamonn Keogh (2016). Matrix Profile II: Exploiting a Novel Algorithm
and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. IEEE ICDM 2016.

Parameters

• tss: Query time series.

• m: Subsequence length.

• profile: The matrix profile, which reflects the distance to the closer element of the subse-
quence from ‘ta’ in ‘tb’.

2.8. Namespace Matrix 41

Khiva Documentation, Release v0.5.0

• index: The matrix profile index, which points to where the aforementioned minimum is located.

void matrixProfile(const af::array &ta, const af::array &tb, long m, af::array &profile, af::array
&index)

Calculates the matrix profile between ‘ta’ and ‘tb’ using a subsequence length of ‘m’.

[1] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning,
Abdullah Mueen, Philip Brisk and Eamonn Keogh (2016). Matrix Profile II: Exploiting a Novel Algorithm
and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. IEEE ICDM 2016.

Parameters

• ta: Query and reference time series.

• tb: Query and reference time series.

• m: Subsequence length.

• profile: The matrix profile, which reflects the distance to the closer element of the subse-
quence from ‘t’ in a different location of itself.

• index: The matrix profile index, which points to where the aforementioned minimum is located.

void matrixProfileLR(const af::array &tss, long m, af::array &profileLeft, af::array &indexLeft,
af::array &profileRight, af::array &indexRight)

Calculates the matrix profile to the left and to the right between ‘t’ and using a subsequence length of ‘m’.

[1] Yan Zhu, Makoto Imamura, Daniel Nikovski, and Eamonn Keogh. Matrix Profile VII: Time Series
Chains: A New Primitive for Time Series Data Mining. IEEE ICDM 2017

Notice that when there is no match the subsequence index is the length of tss.

Parameters

• tss: Time series to compute the matrix profile.

• m: Subsequence length.

• profileLeft: The matrix profile distance to the left.

• indexLeft: The subsequence index of the matrix profile to the left.

• profileRight: The matrix profile distance to the right.

• indexRight: The subsequence index of the matrix profile to the right.

void getChains(const af::array &tss, long m, af::array &chains)
Calculates all the chains within ‘tss’ using a subsequence length of ‘m’.

[1] Yan Zhu, Makoto Imamura, Daniel Nikovski, and Eamonn Keogh. Matrix Profile VII: Time Series
Chains: A New Primitive for Time Series Data Mining. IEEE ICDM 2017

Notice that the size of the first dimension is the maximum possible size which is n - m + 1. If the number of
values belonging to a chain is lower than the maximum, the remaining values and indexes are 0. It implies
that 0 is an invalid chain index.

Parameters

• tss: Time series to compute the chains within them.

• m: Subsequence length.

• chains: The calculated chains with the following topology:

– 1st dimension corresponds to the chains indexes flattened.

42 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

– 2nd dimension:

* [0] corresponds to all the indexes in the chains flattened

* [1] corresponds to the index of the chain that the value in [0] belongs to.

– 3rd dimension corresponds to the number of time series.

namespace internal

Typedefs

using khiva::matrix::internal::DistancesVector = typedef std::vector<double>

using khiva::matrix::internal::IndexesVector = typedef std::vector<unsigned int>

using khiva::matrix::internal::MatrixProfilePair = typedef std::pair<DistancesVector, IndexesVector>

using khiva::matrix::internal::LeftRightProfilePair = typedef std::pair<MatrixProfilePair, MatrixProfilePair>

using khiva::matrix::internal::Chain = typedef std::vector<unsigned int>

using khiva::matrix::internal::ChainVector = typedef std::vector<Chain>

Functions

af::array slidingDotProduct(const af::array &q, const af::array &t)
Calculates the sliding dot product of the time series ‘q’ against t.

Return array Returns an array with as many elements as ‘t’ in the first dimension and as many
elements as the last dimension of ‘q’ in the last dimension.

Parameters
• q: Array whose first dimension is the length of the query time series and the last dimension is

the number of time series to calculate.
• t: Array with the second time series in the first dimension.

void meanStdev(const af::array &t, af::array &a, long m, af::array &mean, af::array &stdev)
Calculates the moving average and standard deviation of the time series ‘t’.

Parameters
• t: Input time series. Multiple time series.
• a: Auxiliary array to be used in the function calculateDistanceProfile. Use the overloaded

method without this parameter.
• m: Window size.
• mean: Output array containing the moving average.
• stdev: Output array containing the moving standard deviation.

void meanStdev(const af::array &t, long m, af::array &mean, af::array &stdev)
Calculates the moving average and standard deviation of the time series ‘t’.

Parameters
• t: Input time series. Multiple time series.
• m: Window size.
• mean: Output array containing the moving average.
• stdev: Output array containing the moving standard deviation.

2.8. Namespace Matrix 43

Khiva Documentation, Release v0.5.0

void calculateDistances(const af::array &qt, const af::array &a, const af::array
&sum_q, const af::array &sum_q2, const af::array &mean_t,
const af::array &sigma_t, const af::array &mask, af::array
&distances)

Calculates the distance between ‘q’ and the time series ‘t’, which produced the sliding. Multiple
queries can be computed simultaneously in the last dimension of ‘q’.

Parameters
• qt: The sliding dot product of ‘q’ and ‘t’.
• a: Auxiliary array computed using the meanStdev function. This array contains a precomputed

fixed value to speed up the distance calculation.
• sum_q: Sum of the values contained in ‘q’.
• sum_q2: Sum of squaring the values contained in ‘q’.
• mean_t: Moving average of ‘t’ using a window size equal to the number of elements in ‘q’.
• sigma_t: Moving standard deviation of ‘t’ using a window size equal to the number of

elements in ‘q’.
• mask: Mask band matrix to filter the trivial match of a subsequence with itself.
• distances: Resulting distances.

void calculateDistances(const af::array &qt, const af::array &a, const af::array
&sum_q, const af::array &sum_q2, const af::array &mean_t,
const af::array &sigma_t, af::array &distances)

Calculates the distance between ‘q’ and the time series ‘t’, which produced the sliding. Multiple
queries can be computed simultaneously in the last dimension of ‘q’.

Parameters
• qt: The sliding dot product of ‘q’ and ‘t’.
• a: Auxiliary array computed using the meanStdev function. This array contains a precomputed

fixed value to speed up the distance calculation.
• sum_q: Sum of the values contained in ‘q’.
• sum_q2: Sum of squaring the values contained in ‘q’.
• mean_t: Moving average of ‘t’ using a window size equal to the number of elements in ‘q’.
• sigma_t: Moving standard deviation of ‘t’ using a window size equal to the number of

elements in ‘q’.
• distances: Resulting distances.

bool tileIsFarFromDiagonal(long bandSize, long numRows, long row, long numColumns,
long column)

Given a tile indices and sizes it returns true when tile would not be affected by a identity band matrix.

Return If it is far or not.
Parameters

• bandSize: The band size.
• numRows: Number of rows of the tile.
• row: Starting row of the tile.
• numColumns: Number of columns of the tile.
• column: Starting column of the tile.

af::array generateMask(long m, long numRows, long row, long numColumns, long column, long
nTimeSeries = 1)

Generate an identity band matrix for a given tile indices.

Return The mask.
Parameters

• m: The query size.
• numRows: Number of rows of the tile.
• row: Starting row of the tile.
• numColumns: Number of columns of the tile.

44 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

• column: Starting column of the tile.
• nTimeSeries: Number of time series.

void massWithMask(af::array q, const af::array &t, const af::array &a, const af::array
&mean_t, const af::array &sigma_t, const af::array &mask, af::array
&distances)

Calculates the Mueen distance.

[1] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh
Dau, Diego Furtado Silva, Abdullah Mueen, Eamonn Keogh (2016). Matrix Profile I: All Pairs Sim-
ilarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets. IEEE
ICDM 2016.

Parameters
• q: Array whose first dimension is the length of the query time series and the last dimension is

the number of time series to calculate.
• t: Array with the second time series in the first dimension.
• a: Auxiliary array computed using the meanStdev function. This array contains a precomputed

fixed value to speed up the distance calculation.
• mean_t: Moving average of ‘t’ using a window size equal to the number of elements in ‘q’.
• sigma_t: Moving standard deviation of ‘t’ using a window size equal to the number of

elements in ‘q’.
• mask: Specifies the elements that should not be considered in the computation.
• distances: Resulting distances.

void mass(af::array q, const af::array &t, const af::array &a, const af::array &mean_t, const
af::array &sigma_t, af::array &distances)

Mueen’s Algorithm for Similarity Search.

Parameters
• q: Array whose first dimension is the length of the query time series and the last dimension is

the number of time series to calculate.
• t: Array with the second time series in the first dimension.
• a: Auxiliary array computed using the meanStdev function. This array contains a precomputed

fixed value to speed up the distance calculation.
• mean_t: Moving average of ‘t’ using a window size equal to the number of elements in ‘q’.
• sigma_t: Moving standard deviation of ‘t’ using a window size equal to the number of

elements in ‘q’.
• distances: Resulting distances.

void stomp_batched(const af::array &ta, af::array tb, long m, long batch_size, af::array &pro-
file, af::array &index)

void stomp_batched_two_levels(af::array ta, af::array tb, long m, long batch_size_b, long
batch_size_a, af::array &profile, af::array &index)

void stomp_parallel(const af::array &ta, af::array tb, long m, af::array &profile, af::array
&index)

void stomp_batched_two_levels(af::array t, long m, long batch_size_b, long batch_size_a,
af::array &profile, af::array &index)

void stomp_parallel(af::array t, long m, af::array &profile, af::array &index)

void findBestN(const af::array &profile, const af::array &index, long m, long n, af::array
&distance, af::array &indices, af::array &subsequenceIndices, bool selfJoin, bool
lookForMotifs)

void scamp(af::array tss, long m, af::array &profile, af::array &index)

2.8. Namespace Matrix 45

Khiva Documentation, Release v0.5.0

void scamp(af::array ta, af::array tb, long m, af::array &profile, af::array &index)

void getChains(af::array tss, long m, af::array &chains)

ChainVector extractAllChains(const IndexesVector &profileLeft, const IndexesVector
&profileRight)

LeftRightProfilePair scampLR(std::vector<double> &&ta, long m)

void scampLR(af::array tss, long m, af::array &profileLeft, af::array &indexLeft, af::array &profi-
leRight, af::array &indexRight)

2.9 Namespace Normalization

namespace normalization

Functions

af::array decimalScalingNorm(const af::array &tss)
Normalizes the given time series according to its maximum value and adjusts each value within the range
(-1, 1).

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
have been normalized by dividing each number by 10^j, where j is the number of integer digits of the
max number in the time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

void decimalScalingNormInPlace(af::array &tss)
Same as decimalScalingNorm, but it performs the operation in place, without allocating further memory.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array maxMinNorm(const af::array &tss, double high = 1.0, double low = 0.0, double epsilon =
0.00000001)

Normalizes the given time series according to its minimum and maximum value and adjusts each value
within the range [low, high].

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
have been normalized by maximum and minimum values, and scaled as per high and low parameters.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• high: Maximum final value (Defaults to 1.0).

• low: Minimum final value (Defaults to 0.0).

46 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

• epsilon: Safeguard for constant (or near constant) time series as the operation implies a unit
scale operation between min and max values in the tss.

void maxMinNormInPlace(af::array &tss, double high = 1.0, double low = 0.0, double epsilon =
0.00000001)

Same as maxMinNorm, but it performs the operation in place, without allocating further memory.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• high: Maximum final value (Defaults to 1.0).

• low: Minimum final value (Defaults to 0.0).

• epsilon: Safeguard for constant (or near constant) time series as the operation implies a unit
scale operation between min and max values in the tss.

af::array meanNorm(const af::array &tss)
Normalizes the given time series according to its maximum-minimum value and its mean. It follows the
following formulae:

�́� =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥)
.

Return af::array An array with the same dimensions as tss, whose values (time series in dimension 0)
have been normalized by substracting the mean from each number and dividing each number by
𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥), in the time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

void meanNormInPlace(af::array &tss)
Normalizes the given time series according to its maximum-minimum value and its mean. It follows the
following formulae:

�́� =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑚𝑎𝑥(𝑥) −𝑚𝑖𝑛(𝑥)
.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array znorm(const af::array &tss, double epsilon = 0.00000001)
Calculates a new set of timeseries with zero mean and standard deviation one.

Return af::array With the same dimensions as tss where the time series have been adjusted for zero mean
and one as standard deviation.

Parameters

2.9. Namespace Normalization 47

Khiva Documentation, Release v0.5.0

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• epsilon: Minimum standard deviation to consider. It acts as a gatekeeper for those time series
that may be constant or near constant.

void znormInPlace(af::array &tss, double epsilon = 0.00000001)
Adjusts the time series in the given input and performs z-norm inplace (without allocating further memory).

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• epsilon: Minimum standard deviation to consider. It acts as a gatekeeper for those time series
that may be constant or near constant.

2.10 Namespace Polynomial

namespace polynomial

Functions

af::array polyfit(const af::array &x, const af::array &y, int deg)
Least squares polynomial fit. Fit a polynomial 𝑝(𝑥) = 𝑝[0] * 𝑥𝑑𝑒𝑔 + ... + 𝑝[𝑑𝑒𝑔] of degree 𝑑𝑒𝑔 to points
(𝑥, 𝑦). Returns a vector of coefficients 𝑝 that minimizes the squared error.

Return af::array Polynomial coefficients, highest power first.

Parameters

• x: x-coordinates of the M sample points (𝑥[𝑖], 𝑦[𝑖]).

• y: y-coordinates of the sample points.

• deg: Degree of the fitting polynomial.

af::array roots(const af::array &pp)
Calculates the roots of a polynomial with coefficients given in 𝑝. The values in the rank-1 array 𝑝 are
coefficients of a polynomial. If the length of 𝑝 is 𝑛 + 1 then the polynomial is described by:

𝑝[0] * 𝑥𝑛 + 𝑝[1] * 𝑥𝑛−1 + ... + 𝑝[𝑛− 1] * 𝑥 + 𝑝[𝑛]

.

Return af::array Containing the roots of the polynomial.

Parameters

• pp: Array of polynomial coefficients.

2.11 Namespace Regression

namespace regression

48 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

Functions

void linear(const af::array &xss, const af::array &yss, af::array &slope, af::array &intercept,
af::array &rvalue, af::array &pvalue, af::array &stderrest)

Calculate a linear least-squares regression for two sets of measurements. Both arrays should have the same
length.

Parameters

• xss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• yss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• slope: Slope of the regression line.

• intercept: Intercept of the regression line.

• rvalue: Correlation coefficient.

• pvalue: Two-sided p-value for a hypothesis test whose null hypothesis is that the slope is zero,
using Wald Test with t-distribution of the test statistic.

• stderrest: Standard error of the estimated gradient.

2.12 Namespace Regularization

namespace regularization

Typedefs

using khiva::regularization::AggregationFuncDimT = typedef af::array (*)(const af::array &, const dim_t)

using khiva::regularization::AggregationFuncBoolDimT = typedef af::array (*)(const af::array &, bool, const dim_t)

using khiva::regularization::AggregationFuncInt = typedef af::array (*)(const af::array &, const int)

Functions

af::array groupBy(const af::array &in, AggregationFuncBoolDimT aggregationFunction, int
nColumnsKey = 1, int nColumnsValue = 1)

Group by operation in the input array using nColumnsKey columns as group keys and nColumnsValue
columns as values. The data is expected to be sorted. The aggregation function determines the operation
to aggregate the values.

Return af::array Array with the values of the group keys aggregated using the aggregationFunction.

Parameters

• in: Input array containing the keys and values to operate with.

• aggregationFunction: This param determines the operation aggregating the values.

• nColumnsKey: Number of columns conforming the key.

• nColumnsValue: Number of columns conforming the value (they are expected to be consecu-
tive to the column keys).

2.12. Namespace Regularization 49

Khiva Documentation, Release v0.5.0

af::array groupBy(const af::array &in, AggregationFuncInt aggregationFunction, int nColumnsKey =
1, int nColumnsValue = 1)

Group by operation in the input array using nColumnsKey columns as group keys and nColumnsValue
columns as values. The data is expected to be sorted. The aggregation function determines the operation
to aggregate the values.

Return af::array Array with the values of the group keys aggregated using the aggregationFunction.

Parameters

• in: Input array containing the keys and values to operate with.

• aggregationFunction: This param determines the operation aggregating the values.

• nColumnsKey: Number of columns conforming the key.

• nColumnsValue: Number of columns conforming the value (they are expected to be consecu-
tive to the column keys).

af::array groupBy(const af::array &in, AggregationFuncDimT aggregationFunction, int
nColumnsKey = 1, int nColumnsValue = 1)

Group by operation in the input array using nColumnsKey columns as group keys and nColumnsValue
columns as values. The data is expected to be sorted. The aggregation function determines the operation
to aggregate the values.

Return af::array Array with the values of the group keys aggregated using the aggregationFunction.

Parameters

• in: Input array containing the keys and values to operate with.

• aggregationFunction: This param determines the operation aggregating the values.

• nColumnsKey: Number of columns conforming the key.

• nColumnsValue: Number of columns conforming the value (they are expected to be consecu-
tive to the column keys).

2.13 Namespace Statistics

namespace statistics

Functions

af::array covariance(const af::array &tss, bool unbiased = true)
Returns the covariance matrix of the time series contained in tss.

Return af::array The covariance matrix of the time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• unbiased: Determines whether it divides by n - 1 (if false) or n (if true).

50 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

af::array kurtosis(const af::array &tss)
Returns the kurtosis of tss (calculated with the adjusted Fisher-Pearson standardized moment coefficient
G2).

Return af::array The kurtosis of tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array moment(const af::array &tss, int k)
Returns the kth moment of the given time series.

Return af::array The kth moment of the given time series.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• k: The specific moment to be calculated.

af::array ljungBox(const af::array &tss, long lags)
The Ljung–Box test checks that data within the time series are independently distributed (i.e. the correla-
tions in the population from which the sample is taken are 0, so that any observed correlations in the data
result from randomness of the sampling process). Data are no independently distributed, if they exhibit
serial correlation.

The test statistic is:

𝑄 = 𝑛 (𝑛 + 2)

ℎ∑︁
𝑘=1

𝜌2𝑘
𝑛− 𝑘

where ‘’n” is the sample size, 𝜌𝑘 is the sample autocorrelation at lag ‘’k’‘, and ‘’h” is the number of lags
being tested. Under 𝐻0 the statistic Q follows a 𝜒2(ℎ). For significance level 𝛼, the 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑟𝑒𝑔𝑖𝑜𝑛 for
rejection of the hypothesis of randomness is:

𝑄 > 𝜒2
1−𝛼,ℎ

where 𝜒2
1−𝛼,ℎ is the 𝛼-quantile of the chi-squared distribution with ‘’h” degrees of freedom.

[1] G. M. Ljung G. E. P. Box (1978). On a measure of lack of fit in time series models. Biometrika,
Volume 65, Issue 2, 1 August 1978, Pages 297–303.

Return af::array Ljung-Box statistic test.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• lags: Number of lags being tested.

2.13. Namespace Statistics 51

Khiva Documentation, Release v0.5.0

af::array quantile(const af::array &tss, const af::array &q, float precision = 100000000)
Returns values at the given quantile.

Return af::array Values at the given quantile.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series. NOTE: the time series should be sorted.

• q: Percentile(s) at which to extract score(s). One or many.

• precision: Number of decimals expected.

af::array quantilesCut(const af::array &tss, float quantiles, float precision = 0.00000001)
Discretizes the time series into equal-sized buckets based on sample quantiles.

Return af::array Matrix with the categories, one category per row, the start of the category in the first
column and the end in the second category.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series. NOTE: the time series should be sorted.

• quantiles: Number of quantiles to extract. From 0 to 1, step 1/quantiles.

• precision: Number of decimals expected.

af::array sampleStdev(const af::array &tss)
Estimates standard deviation based on a sample. The standard deviation is calculated using the “n-1”
method.

Return af::array The sample standard deviation.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

af::array skewness(const af::array &tss)
Calculates the sample skewness of tss (calculated with the adjusted Fisher-Pearson standardized moment
coefficient G1).

Return af::array Array containing the skewness of each time series in tss.

Parameters

• tss: Expects an input array whose dimension zero is the length of the time series (all the same)
and dimension one indicates the number of time series.

• Namespace Array

• Namespace Clustering

• Namespace Dimensionality

• Namespace Distances

• Namespace Features

• Namespace Library

52 Chapter 2. Khiva API

Khiva Documentation, Release v0.5.0

• Namespace LinAlg

• Namespace Matrix

• Namespace Normalization

• Namespace Polynomial

• Namespace Regression

• Namespace Regularization

• Namespace Statistics

2.13. Namespace Statistics 53

Khiva Documentation, Release v0.5.0

54 Chapter 2. Khiva API

CHAPTER 3

Bindings

We have developed bindings to enable the execution of Khiva from the following languages. In order to make it work,
you should first install Khiva library in your machine, explained in :ref: chapter-gettingstarted.

3.1 Python

In order to install the khiva-python binding of the library, you would need to fetch the latest version of the code from:

git clone https://github.com/shapelets/khiva-python.git

After cloning the repository, you can install khiva-python by executing the next commands:

cd /path_to_khiva-python
python3 setup.py install

If the installation is successful, you are ready to start playing with the library.

3.2 Java

In order to install the khiva-java binding of the library, you would need to fetch the latest version of the code from:

git clone https://github.com/shapelets/khiva-java.git

Once you have downloaded the code, you have to move to the source code directory and execute the following com-
mands:

cd path_to_java_khiva_dir
mvn install
mvn javadoc:javadoc

If all steps finished as expected, you should be able to use the Khiva from your java projects.

55

Khiva Documentation, Release v0.5.0

3.3 R

In order to install the khiva-r binding of the library, you would need to fetch the latest version of the code from:

git clone https://github.com/shapelets/khiva-r.git

After downloading the code, you would need to open an R console and execute the following commands, to set the
work directory and install the Khiva binding:

setwd(<project-root-dir>/)
devtools::install()

Once the installation of the binding has been carried out, you can make the library available by executing:

library(khiva)

If all previous steps were successful you will ready to start working with the library.

3.4 MATLAB

In order to install the khiva-matlab binding of the library, you would need to fetch the latest version of the code from:

git clone https://github.com/shapelets/khiva-matlab.git

Once the code is available, we just have to add the path to the khiva-matlab/+khiva folder to the MATLAB path. Thus,
the user will be able to import and call our library.

56 Chapter 3. Bindings

CHAPTER 4

Building programs using Khiva with CMake

In order to build a program using the Khiva library with the CMake build system you need just a couple of lines in
your CmakeLists.txt:

cmake_minimum_required(VERSION 3.1)
project(example)

find_package(Khiva REQUIRED)

add_executable(example example.cpp)
target_link_libraries(example Khiva::khiva)

find_package(Khiva REQUIRED) may be used when Khiva was installed system wide. Please follow the
installation instructions for your operating system contained at the Getting Started.

57

https://cmake.org/

Khiva Documentation, Release v0.5.0

58 Chapter 4. Building programs using Khiva with CMake

CHAPTER 5

AUTHORS

5.1 Core Development Team

• Justo Ruiz-Ferrer (justo.ruiz@shapelets.io)

• Antonio Vilches (antonio.vilches@shapelets.io)

• Oscar Torreno (oscar.torreno@shapelets.io)

• David Cuesta (david.cuesta@shapelets.io)

5.2 Contributions

• Luis Sanchez (luis.sanchez@shapelets.io)

59

mailto:justo.ruiz@shapelets.io
mailto:antonio.vilches@shapelets.io
mailto:oscar.torreno@shapelets.io
mailto:david.cuesta@shapelets.io
mailto:luis.sanchez@shapelets.io

Khiva Documentation, Release v0.5.0

60 Chapter 5. AUTHORS

CHAPTER 6

Cite Us

If you use Khiva Library for a publication, please cite it as:

@misc{khiva-library,
author = "David Cuesta and Justo Ruiz and Oscar Torreno and Antonio Vilches",
title = "Khiva Library",
howpublished = "\url{https://shapelets.io/khiva}"

}

61

Khiva Documentation, Release v0.5.0

62 Chapter 6. Cite Us

Index

K
khiva::array (C++ type), 9
khiva::array::Array (C++ class), 11
khiva::array::Array::~Array (C++ function),

11
khiva::array::Array::Array (C++ function),

11
khiva::array::Array::getColumn (C++ func-

tion), 12
khiva::array::Array::getData (C++ func-

tion), 12
khiva::array::Array::getElement (C++

function), 12
khiva::array::Array::getNumElements

(C++ function), 12
khiva::array::Array::getNumW (C++ func-

tion), 12
khiva::array::Array::getNumX (C++ func-

tion), 12
khiva::array::Array::getNumY (C++ func-

tion), 12
khiva::array::Array::getNumZ (C++ func-

tion), 12
khiva::array::Array::getRow (C++ function),

12
khiva::array::Array::isEmpty (C++ func-

tion), 13
khiva::array::Array::print (C++ function),

13
khiva::array::Array::setData (C++ func-

tion), 12
khiva::array::Array::setNumW (C++ func-

tion), 11
khiva::array::Array::setNumX (C++ func-

tion), 11
khiva::array::Array::setNumY (C++ func-

tion), 11
khiva::array::Array::setNumZ (C++ func-

tion), 11

khiva::array::createArray (C++ function), 9
khiva::array::deleteArray (C++ function), 9
khiva::array::from_af_array (C++ function),

10
khiva::array::getData (C++ function), 9
khiva::array::getDims (C++ function), 10
khiva::array::getIndexMaxColumns (C++

function), 11
khiva::array::getRowsWithMaximals (C++

function), 11
khiva::array::getType (C++ function), 10
khiva::array::increment_ref_count (C++

function), 10
khiva::array::join (C++ function), 10
khiva::array::print (C++ function), 10
khiva::clustering (C++ type), 13
khiva::clustering::kMeans (C++ function), 13
khiva::clustering::kShape (C++ function), 13
khiva::dimensionality (C++ type), 14
khiva::dimensionality::PAA (C++ function),

14
khiva::dimensionality::PIP (C++ function),

14
khiva::dimensionality::PLABottomUp (C++

function), 15
khiva::dimensionality::PLASlidingWindow

(C++ function), 15
khiva::dimensionality::ramerDouglasPeucker

(C++ function), 16
khiva::dimensionality::SAX (C++ function),

16
khiva::dimensionality::visvalingam (C++

function), 17
khiva::distances (C++ type), 17
khiva::distances::dtw (C++ function), 18
khiva::distances::euclidean (C++ function),

18
khiva::distances::hamming (C++ function), 18
khiva::distances::manhattan (C++ function),

18

63

Khiva Documentation, Release v0.5.0

khiva::distances::sbd (C++ function), 19
khiva::distances::squaredEuclidean (C++

function), 19
khiva::features (C++ type), 19
khiva::features::absEnergy (C++ function),

19
khiva::features::absoluteSumOfChanges

(C++ function), 20
khiva::features::aggregatedAutocorrelation

(C++ function), 20, 21
khiva::features::aggregatedLinearTrend

(C++ function), 21
khiva::features::approximateEntropy

(C++ function), 22
khiva::features::autoCorrelation (C++

function), 22
khiva::features::autoCovariance (C++

function), 22
khiva::features::binnedEntropy (C++ func-

tion), 23
khiva::features::c3 (C++ function), 23
khiva::features::cidCe (C++ function), 23
khiva::features::countAboveMean (C++

function), 24
khiva::features::countBelowMean (C++

function), 24
khiva::features::crossCorrelation (C++

function), 24
khiva::features::crossCovariance (C++

function), 24
khiva::features::cwtCoefficients (C++

function), 24
khiva::features::energyRatioByChunks

(C++ function), 25
khiva::features::fftAggregated (C++ func-

tion), 25
khiva::features::fftCoefficient (C++

function), 25
khiva::features::firstLocationOfMaximum

(C++ function), 26
khiva::features::firstLocationOfMinimum

(C++ function), 26
khiva::features::friedrichCoefficients

(C++ function), 26
khiva::features::hasDuplicateMax (C++

function), 27
khiva::features::hasDuplicateMin (C++

function), 27
khiva::features::hasDuplicates (C++ func-

tion), 26
khiva::features::indexMassQuantile (C++

function), 27
khiva::features::kurtosis (C++ function), 27
khiva::features::largeStandardDeviation

(C++ function), 27
khiva::features::lastLocationOfMaximum

(C++ function), 28
khiva::features::lastLocationOfMinimum

(C++ function), 28
khiva::features::length (C++ function), 28
khiva::features::linearTrend (C++ func-

tion), 28
khiva::features::localMaximals (C++ func-

tion), 28
khiva::features::longestStrikeAboveMean

(C++ function), 29
khiva::features::longestStrikeBelowMean

(C++ function), 29
khiva::features::maximum (C++ function), 29
khiva::features::maxLangevinFixedPoint

(C++ function), 29
khiva::features::mean (C++ function), 30
khiva::features::meanAbsoluteChange

(C++ function), 30
khiva::features::meanChange (C++ function),

30
khiva::features::meanSecondDerivativeCentral

(C++ function), 30
khiva::features::median (C++ function), 30
khiva::features::minimum (C++ function), 31
khiva::features::numberCrossingM (C++

function), 31
khiva::features::numberCwtPeaks (C++

function), 31
khiva::features::numberPeaks (C++ func-

tion), 31
khiva::features::partialAutocorrelation

(C++ function), 32
khiva::features::percentageOfReoccurringDatapointsToAllDatapoints

(C++ function), 32
khiva::features::percentageOfReoccurringValuesToAllValues

(C++ function), 32
khiva::features::quantile (C++ function), 33
khiva::features::rangeCount (C++ function),

33
khiva::features::ratioBeyondRSigma (C++

function), 33
khiva::features::ratioValueNumberToTimeSeriesLength

(C++ function), 33
khiva::features::sampleEntropy (C++ func-

tion), 34
khiva::features::skewness (C++ function), 34
khiva::features::spktWelchDensity (C++

function), 34
khiva::features::standardDeviation (C++

function), 35
khiva::features::sumOfReoccurringDatapoints

(C++ function), 35

64 Index

Khiva Documentation, Release v0.5.0

khiva::features::sumOfReoccurringValues
(C++ function), 35

khiva::features::sumValues (C++ function),
35

khiva::features::symmetryLooking (C++
function), 35

khiva::features::timeReversalAsymmetryStatistic
(C++ function), 35

khiva::features::valueCount (C++ function),
36

khiva::features::variance (C++ function), 36
khiva::features::varianceLargerThanStandardDeviation

(C++ function), 36
khiva::library (C++ type), 37
khiva::library::Backend (C++ type), 37
khiva::library::backendInfo (C++ function),

37
khiva::library::getBackend (C++ function),

37
khiva::library::getBackends (C++ function),

37
khiva::library::getDevice (C++ function), 38
khiva::library::getDeviceCount (C++ func-

tion), 38
khiva::library::internal (C++ type), 38
khiva::library::internal::Complexity

(C++ type), 38
khiva::library::internal::CUADRATIC

(C++ enumerator), 38
khiva::library::internal::CUBIC (C++

enumerator), 38
khiva::library::internal::getValueScaledToMemoryDevice

(C++ function), 38
khiva::library::internal::LINEAR (C++

enumerator), 38
khiva::library::internal::setDeviceMemoryInGB

(C++ function), 38
khiva::library::khiva_backend (C++ type),

37
khiva::library::KHIVA_BACKEND_CPU (C++

enumerator), 37
khiva::library::KHIVA_BACKEND_CUDA (C++

enumerator), 37
khiva::library::KHIVA_BACKEND_DEFAULT

(C++ enumerator), 37
khiva::library::KHIVA_BACKEND_OPENCL

(C++ enumerator), 37
khiva::library::setBackend (C++ function),

37
khiva::library::setDevice (C++ function), 37
khiva::library::setDeviceMemoryInGB

(C++ function), 38
khiva::linalg (C++ type), 38
khiva::linalg::lls (C++ function), 39

khiva::matrix (C++ type), 39
khiva::matrix::findBestNDiscords (C++

function), 40
khiva::matrix::findBestNMotifs (C++ func-

tion), 40
khiva::matrix::findBestNOccurrences

(C++ function), 39
khiva::matrix::getChains (C++ function), 42
khiva::matrix::internal (C++ type), 43
khiva::matrix::internal::calculateDistances

(C++ function), 43, 44
khiva::matrix::internal::extractAllChains

(C++ function), 46
khiva::matrix::internal::findBestN (C++

function), 45
khiva::matrix::internal::generateMask

(C++ function), 44
khiva::matrix::internal::getChains (C++

function), 46
khiva::matrix::internal::mass (C++ func-

tion), 45
khiva::matrix::internal::massWithMask

(C++ function), 45
khiva::matrix::internal::meanStdev (C++

function), 43
khiva::matrix::internal::scamp (C++ func-

tion), 45
khiva::matrix::internal::scampLR (C++

function), 46
khiva::matrix::internal::slidingDotProduct

(C++ function), 43
khiva::matrix::internal::stomp_batched

(C++ function), 45
khiva::matrix::internal::stomp_batched_two_levels

(C++ function), 45
khiva::matrix::internal::stomp_parallel

(C++ function), 45
khiva::matrix::internal::tileIsFarFromDiagonal

(C++ function), 44
khiva::matrix::mass (C++ function), 39
khiva::matrix::matrixProfile (C++ func-

tion), 41, 42
khiva::matrix::matrixProfileLR (C++ func-

tion), 42
khiva::matrix::stomp (C++ function), 41
khiva::normalization (C++ type), 46
khiva::normalization::decimalScalingNorm

(C++ function), 46
khiva::normalization::decimalScalingNormInPlace

(C++ function), 46
khiva::normalization::maxMinNorm (C++

function), 46
khiva::normalization::maxMinNormInPlace

(C++ function), 47

Index 65

Khiva Documentation, Release v0.5.0

khiva::normalization::meanNorm (C++ func-
tion), 47

khiva::normalization::meanNormInPlace
(C++ function), 47

khiva::normalization::znorm (C++ function),
47

khiva::normalization::znormInPlace (C++
function), 48

khiva::polynomial (C++ type), 48
khiva::polynomial::polyfit (C++ function),

48
khiva::polynomial::roots (C++ function), 48
khiva::regression (C++ type), 48
khiva::regression::linear (C++ function), 49
khiva::regularization (C++ type), 49
khiva::regularization::groupBy (C++ func-

tion), 49, 50
khiva::statistics (C++ type), 50
khiva::statistics::covariance (C++ func-

tion), 50
khiva::statistics::kurtosis (C++ function),

50
khiva::statistics::ljungBox (C++ function),

51
khiva::statistics::moment (C++ function), 51
khiva::statistics::quantile (C++ function),

51
khiva::statistics::quantilesCut (C++

function), 52
khiva::statistics::sampleStdev (C++ func-

tion), 52
khiva::statistics::skewness (C++ function),

52

66 Index

	Getting Started
	Khiva API
	Bindings
	Building programs using Khiva with CMake
	AUTHORS
	Cite Us
	Index

